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ABSTRACT: There are many publications explored steady slip flow through micro channel such as micro annuals, 

rectangular, elliptical.  This study solves analytically unsteady slip flow through elliptic micro channels in case of constant 

pressure gradient. The exact solutions for the velocity field were found by variable separable method. 

 
Keywords: Unsteady, Slip flow, Elliptic micro-channel, constant pressure gradient. 

 

1. INTRODUCTION 

In the past decade, there are various applications of fluid 

flow in microchannels such as in industrial, computer chips 

and chemical processing, etc. It has emerged an important 

research area. Understanding the profile of fluid flow in 

microchannels is very important  to determine  velocity 

profile, pressure distribution and properties of the flow. It 

happens after finding analitical or numerical solutions of 

the flow. 

Many publications studied fluid flow through micro-

channels in many cross-sections, such as trapezoidal, 

annulus, rectangular and elliptical. Some of them 

completed by no-slip boundary conditions and the other by 

slip boundary conditions. There are one for steady case  and 

the other for unsteady case, analytically or experimentally. 

Most of them studied for rectangular and circular cross-

sections [ 1, 2, 3, 4, 5, 6, 7 ].  In elliptic cross section, 

Samir and Farzad  [11] investigate fully developed laminar 

hydro-dynamically steady state and incompressible with 

constant fluid properties. Recently,  Chuchard et al [8] 

analytically studied an unsteady electroosmotic and 

pulsatile flow through an elliptic cylindrical microchannel 

with the Navier slip boundary. Previously, Duan and 

Muzychka  [10]  studied an exact solution of a steady slip 

flow of Newtonian fluid for constant pressure gradient in 

elliptic micro-channels. 

 

The objective of this research is to derive an analytical 

solution of transient flow of a Newtonian fluid with 

constant pressure gradient in elliptic micro-channel with 

Navier slip boundary.  This paper organizes as follows. In 

section 2, the Navier Stokes equation in rectangular 

coordinates is transformed to elliptic cylindrical 

coordinates. In section 3, the derivation of an analytically is 

given. 

2. GOVERNING EQUATIONS 

Consider the unsteady Navier-Stokes equation in 

rectangular coordinates which is derived in paper [9]: 
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As there is no swirling flow,  0
v

z





. Thus the 

momentum equation (1) written in elliptic cylindrical 

coordinates   is 
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where is slip length, which is defined by 
2 





  , 

where   is the molecular mean free path and   denotes 

the tangential momentum accommodation coefficient, 

which has values between 0.87 and 1. In case of 0 , 

conditions (8) reduces to the no-slip boundary condition. 

3.  SOLUTION OF VELOCITY FIELD 

We let 0

dp
c

z



 and apply equality   
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which is equivalent to 

 
 

 2

2
0

cosh 2 cos 2
tu u u

c
 



  
  


  (13) and                     

 
  0

2

2

cosh 2 cos 2

c
w w

c
 

  
 


 (14) 

To solve eq (13), we let 
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Applying separation variable methods  to solve eq (15) and 
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Eq (20)(i) and (21)(i) are Mathieu equations which having 

solutions 
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Boundary  condition  (8)(ii) automatically satisfied. 

 

To apply BC (8)(iv), write 
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Applying BC (8)(iv), 
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Because this equation holds for any instant of time t, then 
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which every term can be choosen to be 0.

 

Multiply the first term in the above equation with 
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For the second term 
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Therefore, general solution of eq. (1) has the form 
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where nA  and nB  are defined as above.         

 

4. CONCLUSION 

The governing equation (1) completed by boundary 

conditions in elliptic micro-channel. The separation method 

was applied to solve eq (1) for the case of constant pressure 

gradient by letting      , , , , ,v t w u t        

         1 2
, , ,w u t u t      and yields an exact 

solution for the velocity field. 
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